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Enhancing Nearfield Acoustic Holography using Wavelet Transform 
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When there are low signal to noise relationships or low coherences between measured pressure 

and a reference sensor, a pressure field measured and estimated by NAH (Nearfield Acoustic 

Holography) becomes noisy on the hologram and source planes. This paper proposes a method 

to obtain the high coherent de-noised pressure signals from low coherent noisy ones by 

combining a wavelet algorithm with NAH. The proposed method obtains the de-noised field 

from acoustic fields on a noise source plane reconstructed through backward propagation of 

NAH. Thus this method does not need high coherent pressure signals on the hologram surface 

while the conventional nearfield acoustic holography requires high-coherent signals. The 

proposed method was verified by numerical simulation using noisy signals, composed of 

original signals and imposed noises distributed on the hologram surface. 
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1. Introduction 

In practical noise engineering applications, it is 

often required to reconstruct noise sources as an 

inverse problem so as to come up with better 

designs to reduce resulting noise suppression. In 

case of an inverse acoustic radiation problem, it is 

to determine the acoustic quantities on the source 

surface based on measured acoustic pressure 

signals in the field. 

There had been many investigations for identi- 

fying or visualizing noise sources. Identification 

of noise sources is very important because one can 

control the noise after finding noise sources in the 

system such as the interior cabin of a vehicle or an 

aircraft. Acoustic holography method is one of 

the best schemes for identifying and visualizing an 

acoustic field. The quality of the hologram 

depends strongly upon the size of the hologram 
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surface, its microphone spacing, the spatial reso- 

lution, the disturbance including the incorrect 

position of the microphones, and the environment 

like an anechoic chamber. 

Disturbances or errors appeared on the ho- 

logram surface significantly affect the quality of 

the acoustic field that will be reconstructed on the 

source surface. In this paper a methodology for 

enhancing the acoustic field image will be 

developed using NAH and a wavelet. 

Identification of the acoustic field was initiated 

from imaging schemes formulated as optical ho- 

lography equations, which can be found in 

Goodman(1968). NAH can be used to get the 

source position at the surface, or to determine 

how the sound field propagates from the surface 

and into the farfield. The advantages of NAH 

include the consistent spatial data sets, the possi- 

bility of an automated measurement process, the 

evaluation of transient or steady state noise 

sources, and the availability of 3D acoustic quan- 

tities. Inverse acoustics using NAH, which is 

proposed by Maynard (1985), Verosi et. al. (1987) 

and Wang(1997), has been the subject of exten- 

sive studies for the past two decades and has been 
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investigated in many areas by several researchers 

like Maynard(1985),  Verosi et. a1.(1987), Wang 

and Wu(1997),  Dumbacher(2000), Borgiotti 

(1990). 

Wavelet analysis was initiated by Alfred Haar 

(1910) and the concept of wavelets in theoretical 

form was first proposed by Jean Morlet(1983). 

The methods of wavelet analysis have been 

mainly developed by Y. Meyer(1993). The 

wavelet transform has become a standard tool in 

signal and image processing, and it has found 

applications to almost all fields of  physics, 

engineering and applied mathematics. There are 

many practical applications for de-noising in- 

cluding image, video quality enhancement and 

even astronomy and astrophysics for studying 

solar corona and detection of gamma sources. 

Said and Peralman (1996) Shapiro (1993) repor- 

ted that the discrete WT is more appropriate for 

signal compression and reconstruction, and it is 

especially popular  in the signal processing com- 

munity. De-noising using the wavelet is used to 

produce enhanced estimates of an image corrup- 

ted by noise. The restored image should contain 

less noise than the original noisy one and be 

sharp. Chambolle(1998),  Chang and Vetterli 

(1997), Coifman and Donoho(1995),  Donoho 

(1992, 1994, 1995), Shao and Cherkassky(1998) 

reported that it means that de-noising should 

result in sharpening the edges of  the original 

noisy image. One of  the key properties underlying 

the success of  wavelets is that the wavelet 

transform provides excellent localization in both 

time and frequency domain. In addition, wavelet 

expansions tend to concentrate the signal energy 

within a relatively small number of  (large) 

coefficients. 

Simoncelli(1999) reported de-noising can be 

viewed as a signal estimation problem in which 

one wants to estimate the original (noise-free) 

image signal from the noisy samples. The wavelet 

thresholding method originally proposed by 

Donoho (1992, 1994, 1995), is a signal estimation 

technique that exploits remarkable abilities of 

wavelet transform for signal de-noising and com- 

pression. It removes noise by discarding coeffici- 

ents that are insignificant relative to some thres- 

hold (assuming that the small coefficients are 

mainly contributed by the additive noise). 

Coifman and Donoho (1995), Donoho(1994, 

1995) reported that wavelet thresholding solution 

is asymptotically optimal in a minimax MSE 

(Mean Squared Error) sense over a variety of 

smoothness spaces. 

Wavelet transform represents the image signal 

as a superposition of wavelet basis functions (or 

the wavelet basis images) weighted by the corre- 

sponding wavelet coefficients. Since wavelet 

transform uses orthogonal basis functions, the 

wavelet coefficients can be computed easily by 

orthogonal decomposition. When using a subset 

of wavelet basis functions to approximate the 

original signal, we do not need to re-compute the 

corresponding subset of coefficients. 

This paper is mainly concerned with an inverse 

acoustics using N A H  and wavelet analysis. The 

acoustic field on the noise source surface is 

reconstructed from measured acoustic pressure 

signals on a hologram surface. When there are 

low coherences between measured pressure and 

the reference sensor, a pressure field measured 

and estimated by N A H  (Nearfield Acoustic Ho- 

lography) has a noisy acoustic field on source 

plane. It is caused by low coherences between 

measured pressure and the reference sensor on a 

hologram surface or by low signal- to-noise ratio. 

This paper proposes a method to get the clear 

acoustic field from a noisy one by combining a 

wavelet algorithm with NAH.  The proposed 

method obtains the de-noised field from a noisy 

field on a noise source plane reconstructed 

through backward propagation of  NAH. 

2. Theory 

There are several algorithms for identifying 

noise sources, which are beam-forming method 

and nearfield acoustic holography. Nearfield 

acoustic holography has been developed by 

Maynard et. al (1985, 1987) since the mid of  1980. 

Many researchers have developed an NAH 

algorithm for enhancing NAH performance 

hereafter. But the main obstacles for testing N A H  
are to measure the noise inside an anechoic 
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chamber or a semi-anechoic chamber and to 

utilize high-end microphones with high signal- 

to-noise ratio. Measuring the noise inside an 

anechoic chamber is the ideal solution for obtain- 

ing a clear image on a hologram surface. 

2.1 Nearf ie ld  acoust ic  holography 

The linearized homogeneous wave equation 

can be expressed as follows : 

1 02Pcx, t) .= 0 (1) 
V2P( x ' t  ) C 2 ~ t  2 

where P(x,t) is the pressure at position x and is the 

speed of sound. The time domain can be tran- 

sformed into the frequency domain by using the 

Fourier  transform as follows : 

foO~Cx, t) e ~°~t Pex o~)=Fr{ P<~ t)} = d t  (2) 

{ ~,x.w,} = ~ - f f i x , ~ ,  e -  d ~  (3) Dex.t) = F ~  

where F r  and denote F~ -~ the Fourier  transform 

and inverse Fourier  transform with respect to 

time. 
The wave equation with harmonic motion can 

be obtained from the Fourier  transform 

VZP~x,w) -t- kZPcx, w) = 0 (4) 

where -P(x,o~) is the complex pressure and k =o~ is 
c 

the wave number of the sound field. According to 

the Helmholtz integral equation, the solution can 

be expressed as : 

1" . ~x'°)=Tiff(lkp°cV""o'G'xle'°'-P~¢") On )d~ (5) 
S 

where P0 is the density of the medium and Pcx,,o) 
is the pressure at position x at frequency co, and 

P~¢,~o) and Vm¢,~o) are the pressure and the velocity 

component normal to boundary surface S. G~xl¢,,o) 

denotes the Green's function and ~ represents the 

position of acoustic source. 
In practice, the Green function G is known 

provided that the part of S not at infinity is the 

level surface of a separable coordinate system. 

The three spatial coordinates of  source surface are 
expressed as ~1, ~ez and ~ ,  with the level surface 

T y 

I ~ l l t  h k  | Noise Sources I m m U l i /  i . k  

~ Source Surface 

¢' " ...... ~---.~._." Ho~og~,m 
Microphone Array Surface 

Fig. 1 Coordinate system in Nearfield Acoustic Ho- 
lography 

given by ~s= ~ .  The hologram surface is given by 

~3=~e~ where the constant ~ > ~  (Fig. 1). 

If G~xl¢,,o) satisfies the homogeneous Dirichlet 

boundary condition on the source plane, Eq. (5) 

will be simplified since the first term in Eq. (5) 

will be eliminated. In Cartesian coordinate sys- 

tem, the Green's function can be constructed with 

the homogeneous boundary condition. Since it is 

assumed that Gxl~)satisfies the homogeneous 

Dirichlet condition on the surface is known, then 

Eq. (5) becomes: 

- -  s s r t 

where Gns¢#,-#;,&-~,&-8~) is the transformation 

regarding to the wave propagation and is denoted 

OGtxl¢'°J) normal deriva- by Gns( ~l- ~,~,- t~,~- ~> = On ' 

tive of  Green's function. 
The above equation denotes the convolution 

form. 
But this cannot be evaluated directly because 

the acoustic field is known or measured on a 

hologram surface, not on a source surface. If  Eq. 

(7) is evaluated for ~ s = ~  the following rela- 

tionship can be obtained : 

H -- s r • e~l.~.~- f f  Pc~.~.~G~,-~.a-~d~ld~ (7) 

The RHS term of Eq. (8) is a two-dimensional  

convolut ion;  By using the convolution theorem, 
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Eq. (8) can be inverted to obtain P~a.a,8) in terms 

of P<~,,~2.¢4). Denoting a two-dimensional spatial 

Fourier transform, or a wavenumber transform, 

by F and its inverse by F -1, 

(g) 

= f:f:~k,.k,.z:~o)ej(k~x+k,Y)dXxClyy (9) 

These transformations map functions from space 

domain to wavenumber domain and vice versa. 

By the use of the reconstructive equation expre- 

ssed as a convolution, 

where 

and k,=~/kZ-k~Z-kr 2 is the z-directional wa- 

venumber. 

By combining all the equations to reconstruct 

the acoustic field on an arbitrary position, the 

reconstructive field can be expressed as follows : 

P(x,y,z;co):F-X{ Cns<k#e.,z-z,;~o)Pck.,k.,z,;co)) ( (1 l) 

Similarly, the acoustic field on a source surface 

can be expressed in terms of that on a hologram 

surface as follows: 

~x,y,~,:~o) = F - ' {  G,~s,k.,,,,~ - ~.;o~)/3~,.,,.,~.;~o,} (12) 

2.2 De-noising by wavelet analysis 
The wavelet transform has become a standard 

tool in signal and image processing, and it has 

found applications in almost all fields of physics, 

engineering and applied mathematics. In particu- 

lar, the discrete WT is more appropriate for image 

de-noising, signal compression and reconstruc- 

tion, and it is especially popular in the signal 

processing community. 

Let us assume that the noisy image is defined by 

a set of pixel values x(i,j), where x( i , j )  is the 

pixel coordinate. Then the wavelet transform 

performed on the array X(g,3) is 

Wx (13) 

where W represents the Discrete Wavelet Tran- 

sform (DWT). The two-dimensional array Wx 
has the same dimensions as x, and each element 

Wx(i, j) is a transformed coefficient at coordi- 

nate (i, j). In wavelet thresholding, after setting 

some coefficients to zeros, the reconstructed (de 

-noised) image is obtained by inverse 

transformation 

.~= W-t(Wx)  (14) 

Suppose we use the mean-square-error (MSE) 

distortion measure for the empirical risk : 

D,~,,(x-Fc) = 1  II II 2 
(15) 

n i ~/ 

where n is the total number of image pixels. 

Furthermore, we use the fact that the Euclidean 

(L2) norm is invariant to the transformation W, 

i.e., 

D.~e(x-~c) =D.~.( Wx- Wx) 
(16) : l ~ ( W x ( i , j ) -  ~x(i,j)) z 

From Eq. (16) it is clear that the sum square of 

discarded coefficients can be used as a measure of 

the empirical risk and there is no need to recon- 

struct the image to compute the empirical risk for 

each selection of a set of coefficients. In this way, 

the computational complexity of de-noising with 

the model selection method can be reduced signi- 

ficantly. 

For de-noising applications, the largest-mag- 

nitude coefficients are not necessarily the most 

important because they are contaminated by 

noise. Furthermore, in either compression or de- 

noising applications, the wavelet coefficients can- 

not be coded or ordered strictly according to their 

magnitudes since they are not statistically in- 

dependent (in natural images). For good image 

de-noising, one also needs to specify a 'good' 

ordering of coefficients reflecting statistical prop- 

erties of natural images. Meyer(1993), Said and 

Peralman(1996) showed that the idea of a tree 

structure originally proposed for image compres- 

sion can be successfully adapted for de-noising. 

Wavelet thresholding for image de-noising 
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involves two steps: (a) taking the wavelet tran- 

sform of an image signal (i.e, calculating all the 

wavelet coefficients); (b) discarding (setting to 
zero) the coefficients with relatively small or 

insignificant magnitudes. Each wavelet coefficient 

here corresponds to a wavelet basis function. So 

discarding small coefficients is equivalent to 

discarding wavelet basis functions that have 

coefficients below a certain threshold. The de- 

noised signal is obtained via inverse wavelet 

transform of  the remaining coefficients. The value 

of a threshold is usually chosen based on various 

assumptions about statistical nature of a signal 

and/or  noise. For example, the threshold value 

derived by Donoho(1994, 1995) under asympto- 

tic assumptions is T=a.~2. . log(n) ,  where n is 

the number of  samples and a is the standard 

deviation of zero-mean Gaussian white noise, 

which is unknown and needs to be estimated from 

noisy samples. 

3. Robust Nearfield Acoustic 
Holography Method 

The pressure field on a hologram surface ( ~ =  

~n) can be expressed as 

After impinging the noise field N(#I,&#¢) into the 

pressure field, the noisy pressure field is 

For de-noising the impinged noise field N~6,#~,5- ) 

from the noisy pressure field, the wavelet decom- 

position methodology is required. 
Suppose an unknown function P o n  [0, 1] must 

be reconstructed from the noisy data 

P~j=Po+No, i, j = 0  ..... n - 1  (18) 

where No- is a Gaussian noise. 
The goal of de-noising is to minimize the 

m e a n - s q u a r e  e r r o r  

D~s~(/3-P) - -n-ql /3-PU ~ 
n-x ^ (19) 

=n- l~ ,  (po--po) 2 
i=0 

subject to the constraint with high probabi l i ty , /3  o 

is at least as smooth as Po. High probability 

constraint relates on the observation that whether 

a wavelet coefficient in a sub-band is lower than 

a threshold, i.e. it is not significant, then its 

children on the corresponding wavelet hierar- 

chical tree, located at the same spatial location, 

are not significance with high probabili ty too. 

To satisfy the above mentioned two criteria, i. 

e., optimization of  MSE and the constraint, 

Donoho and Johnstone(1994) proposed a recon- 

struction method with a thresholding process for 

recovering functions from noisy data. 

(1) Apply the interval-adapted multi resolu- 

tion algorithm to the measured data for obtaining 

empirical wavelet coefficients. 

(2) Apply the soft thresholding nonlinearity 

r/~(y)=sgn (y) (1Y I-- t) + coordinate-wise to the 

empirical wavelet coefficients with specially-cho- 

sen threshold t n = ~  log (n) • 71" a / f  n ,  where ~'1 
is a constant. 

(3) Invert the pyramid filtering, recovering 

f fn(tl) ,  i = o  ..... Yl--  1. 

Given that the observed image, P~, is modeled 

as P[J=Po+No and if the error No is Gaussian 

and uncorrelated (both spatially and with Po) 

then finding Po from P/j is a classical statistica 
1 estimation problem. Since the estimation proce- 

dure should work for a variety of signals images 

P E P ( w h e r e  P is the space set of all images 

belonging to the application considered), the goal 

is to find t30. such that sup ll /30-  Poll is minimized. 
P ~ P  

Let W and W -1 denote the wavelet and inverse 

wavelet transform operators, respectively. Then 

Donoho(1995) showed that spurious oscillations 

or equivalently smoothness of the signal Po can 
be maintained by imposing the shrinkage condi- 
tion 

I W/~d<l WPol. (20) 
This problem has a solution which is asympto- 

tically near optimal (simultaneously) for a wide 

variety of classes P, which is proven by Said and 

Pearlman(1996). The procedure, 13 o, satisfying 

the above minimax problem with the given smoo- 
thness condition is given by soft-thresholding in 
the wavelet domain where the threshold depends 
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on the variance of  No(the noise). Then the 

nonlinear wavelet procedure is given by 

ff~o = W -1T~( WPd) (21) 

and 

T ~ ( x ) = ~ x - s g n ( x ) 8  f o r l x l  >~ 
(22) / o f o r l x l  <~ 

is the proposed soft-thresholding rule. The 

threshold ~ is obtained by an estimation proce- 

dure from the observed image data P/~. 

Imposing the shrinkage condition results in two 

important qualitative features (i) reconstruction 

is noise-free in the sense that no spurious 

oscillations are introduced other than in the data 

P/5, and (ii) relatively sharp features in P~ ar 

e maintained. 

Donoho(1995) showed theoretically that soft- 

thresholding is the optimal nonlinear function to 

apply if smoothness of the estimate is important. 

The optimality of the soft-threshold is in terms of  

mean squared error subject to smoothness. The 

threshold, a, can be formulated as 

~----A~e,) (23) 

where A is a constant and ~'(p,) is an estimate of  the 

noise standard deviation. Donoho and Johnstone 

(1994) showed that in fact i f ,~=  2v/2~g(n) then 

c~ was the optimal minimax threshold subject to 

the assumptions previously mentioned. Hence the 

challenge is to design a robust noise variance 
estimator for any given problem. 

4. Numerical Example 

In engineering applications, measured data ha- 

ve errors due to random fluctuation or system 

errors. Even if these errors can be reduced by 

averaging and calibration, the results are not free 

from errors. There are many error sources like 

bias, random errors due to microphone mis- 

matching among microphones and position mis- 
matching. 

The goal is to show that wavelet based noise 

suppression can be used for minimizing the noise 

impinged on acoustic field measured on a ho- 

logram surface. While Wang and Wu(1997) 

showed that their algorithm is robust to errors 

(position error and bias error) with imposed 5% 

errors to every acoustic measured data, the author 

superimposed relative errors from 13.7% to 92% 

based on absolute value of  each measured sound 

pressure level on the original acoustic field and 

got the clear image of acoustic holography by 

using the wavelet based on the noise suppression 

method. It shows that the proposed scheme is 

good compared with the algorithm proposed by 

Wang and Wu(1997). 

The quality of reconstructed acoustic image 

should be judged because the image has inevitable 

errors due to finite hologram in near field 

acoustic holography. To judge the quality of 

reconstructed acoustic field, the M A C ( M o d a l  

Assurance Criterion) is chosen because it is easy 

to compare the shapes. 

./xxP, (.,nl Pa*(m,n) ~ ~,,P;(m,n) Pa(m,m 
V m n  m n  

MAC= ~m,nlps~m,n)~,,~p~m,n)Pa~m,n . (24) 
V r a n  m n 

In this computer simulation, the wave number 

is considered as 2zr, by making the frequency 

identical to the speed of  sound. The hologram 

surface is located at 0.3m, and the source plane is 

0.01m. The sampling spacing is 0.2m. The number 

of hologram data is 32 by 32. The simulation 

works have been done for three cases. The first 

one is an original image without any corruption. 

The second image is corrupted by Gaussian and 

chirping noises. The last one is same as the second 

one except de-noised by wavelet and threshold- 

ing. And the backward propagation process has 

been applied to obtain the acoustic field image on 

the source plane. The acoustic images on the 

hologram surface and source surface have been 

compared with the original that has one as its 

MAC value. 

The example has two monopole sources at 

[0.6m, 0.8m] and [-0.8m, 0.4m] with the unit 
strength. 

Two examples of robust N A H  are studied with 

two monopoles. Figures 2 and 3 show that the 

relative errors in reconstruction of the acoustic 

field for two monopoles with noisy data. Figure 2 
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Fig. 2 Acoustic images on hologram surface 
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Fig. 3 Acoust ic  images on h o l o g r a m  surface on source plane 

(a) denotes an original image on the hologram 
surface, Fig. 2(b) shows the noisy image corrup- 
ted by Gaussian noise and chirping noise and Fig. 
2(c) represents the de-noised image by a wavelet 
scheme. 

Figure 3(a) denotes an original image on the 
prediction surface (source surface), Fig. 3(b) 

shows the backward propagated image using the 
noisy image and Fig. 3(c) represents the back- 
ward propagated image using the de-noised im- 
age by a wavelet scheme. 

MAC were calculated for every case in evaluat- 
ing the quality of acoustic field images. The 
results are shown in Table 1. 
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Table 1 MAC in several cases 

Cases MAC 

Hologram Surface 

Prediction Surface 

Noisy 

De-noised 

0.680 

De-noised 

0.780 

Original 0.886 

Noisy 0.476 

0.640 

Table 2 PSNR in several cases 

Cases PSNR 

47.8 
Hologram Surface 

Prediction Surface 

Noisy 

De-noised 50.7 

Original 43.8 

Noisy 37.7 

De-noised 40.5 

Another judging criterion is the peak-signal-  

to-noise ratio (PSNR) defined by 

255 (25) 
PSNR=20  log10 R M S E  

where for an N by M image, Pu,~, the RMSE 

(Root Mean Squared Error) is defined by 

Pt ~,~- P~} { P~,~- PI~} (26) 

for complex variables P~ia) and /3ti~,~. 

PSNR is used to evaluate objectively the image 

quality in image processing communities. The 

higher value of  PSNR means better image recon- 

struction. The values of PSNR for each case are 

shown in Table 2. 

Based on the MAC and PSNR values for 

judging quality, it is shown that the acoustic field 

image is enhanced by wavelet thresholding 

scheme even if the acoustic field is corrupted by 

errors or noise on the hologram surface. 

5. Conc lus ions  

The NAH with the wavelet de-noising scheme 

is found to be appropriate to reconstruct an 

acoustic field on the hologram surface and 

prediction surface even if the field on the ho- 

logram is noisy. This scheme is mainly concerned 

with inverse acoustics using NAH and wavelet 

analysis, that is, reconstruction of the acoustic 

field on the noise source surface from measured 

acoustic pressure signals on the hologram surface. 

The proposed method obtains the de-noised field 

from noisy field on noise source plane recon- 

structed through the backward propagation of 

NAH. It is shown that the scheme is useful for 

identifying the noise sources on prediction surface 

through the computer simulation. And it is 

proven that the scheme is robust to high degrees 

of uncertainties in the measured data using 

wavelet de-noising. 
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